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b This paper deals with some multiplicity results for periodic orbits of

Hamiltonian systems and for solution of a non-linear Dirichlet problem. These
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results follow from an abstract theorem of Lusternik-%phnirelman type as
d‘e T

applied to an invariant equation of the form Iu + YF(u) = 0 in a Hilbert L

s
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,[_‘ space X = L (m},_,z‘. where L is an unbounded self-adjoint operator and F "‘11
is a /! strictly convex function. ]
e X
» - ‘f , ) ;
¢ - S lomegs Tat A -
Pl /1 ; /’ "ﬂ
g
DY
AMS (MOS) Subject Classifications: 34cC25, 35320, S8EOS. 9

Key Words: Critical Points, Invariant Functionals, Hamiltonian Systems, Non-

linear Dirichlet Problem.

{
Work Unit Number 1 - Applied Analysis - 9

L J

Departamento de Matemdtica - Universidade de Brasilia, Brazil. Partially
supported by CNPq/Brazil.
*k

'® _
— e ‘.A‘"" « A _*_a

Institut de Mathématique Pure et Appliquée - Université Catholique de
Louvain, Belgium,

Sponsored by the United States Army under Contract No. DAAG29-80~-C-0041,

SRt b ns Sans ik & 0 cASaMAMA AR an & §
-, ot oo S [P
.

r T T

\ . L . . I e .
PP W S W O Sy PPN B B oo o m m e a ala moanm' mtafeat oaa oo




A e e SR I A A S R A S i i Bt ieout S At s e e e 0 o,

SIGNIFICANCE AND EXPLANATION

This paper is concerned with existence of multiple solutions of an
equation of the form
(*) Lu + VP(u) =0 ,
where L is a self-adjoint operator and F is a strictly convex function.
We assume that 9F(0) = F(0) = 0, so that u = 0 is a solution of (*).
Loosely speaking, it is reasonable to expect the number of non-trivial
solutions of (*) to be related to the number of eigenvalues of the operator
-L which are crossed by the function 2F(u)/|u|2 as |u]l varies from 0 to
®, We show that under certain conditions this is actually the case.
Applications are given to existence of multiple T-periodic solutions of a
congservative Hamiltonian system JG + VH(u) = 0 and to existence of multiple
non-radial solutions of the Dirichlet problem for =Au + g{u) = 0 in the unit

disc of the plane.
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4 MULTIPLE CRICIAL POINTS OF INVARIANT FUNCTIONALS o
AND APPLICATIONS .
* L 2 .Y
D. G. Costa and M. Willem

1. Introduction ii*

This paper is devoted to some multiplicity results for periodic orbits of

Hamiltonian systems and for solutions of a non-linear Dirichlet problem.

These results follow from an abstract theorem of Lusternik-Schnirelman type,

L AGASL o= b i Pt
A R
. D A AP TR

which is a slight (but useful) extension of Ekeland-Lasry‘'s Theorem IIXI.1 in

[1010

MM

z

We first consider the equation ;;ﬁ

(*) Lu + VF(u) = 0

s

L A B Al At bt a0 o

2 N
in a Hilbert space X =L (2;R), where L is an unbounded self-adjoint

operator with no essential spectrum and F € C‘(IF,R) is strictly convex. We

agsume that VF(0) = 0, so that u = 0 is a solution of (*). We assume

also, without loss of generality, that F(0) = 0. Loosely speaking, it seems
. reasonable to expect the number of non-trivial solutions of (*) to be related
to the number of eigenvalues of <-L crossed by 2P(u)/|u|2 as |u| varies
from 0 to %, As we shall see more precisely in Theorem 2, this heuristic
statement actually holds when (*) is equivariant with respect to some group
action, so that Lusternik-Schnirelman theory can be used. We apply this
theory to the "dual action" introduced by Clarke and Ekeland (7) for
Hamiltonian systeﬁs. The abstract framework and main results are presented in

section 2.

»
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In section 3, as a first application, we consider the existence of T-

periodic solutions of a conservative Hamiltonian system

Ju + VH(u) =0 ,
where H € C‘(lzn,l) is strictly convex and u = 0 is an equilibrium. Using
the natural action of S1 = R/T provided by the time translations (cf.
Fadell-Rabinowitz [12] and Benci [2]), we show that if II;|“|’~2H(u)/IuI2
< 2n/T < 2Wy/T < _]=£5|u|’02l-l(u)/lul2 for some j € N*, then the above
Hamiltonian system possesses at least jn non-constant T-periodic solutions
describing distinct orbits.

For the non-linear Dirichlet problem

=8u + g(u) = 0 in @

uau=20 on 4%
it is classical to use the Z,-action when g is odd [5]. when R is a disc
in Rz, the symmetry of the domain was used in (9] instead of the symmetry of
the non-linearity. In this case, a natural S‘-action is provided by the
rotations. We extend the multiplicity result of [9]) to some resonant cases.
Moreover the use of the dual action simplifies the proof. It is interesting
to note that we obhtain, as in (9], non-radial solutions.

Our argquments depend only on the common properties of the usual index
theories (cf. [12,2], for example]. In particular, for the Dirichlet problem,
other symmetries of the domain could be exploited. More general situations
and applications to a non-linear string equation will be considered in a

subsequent paper.
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- 2. ‘The abstract framework. Main results. B
Lc '.~ . -

Ei‘ let X be a Hilbert space on which the group s1 acts through ;;:
als 1 o

. isometries S(8), i.e., for every 6 @€ S, S(8) : X + X is an isometry such f

- that g

3 .

> _ "

I s(e1 + 62) = S(61)S(92) ’ -4

4

. s(0) = 14 , 1

o (6,u) v S(B8)u is continuous . p

. _i

We denote by Fix(S‘) € X the subspace of fixed points of X under the -

4

. ®]

S ~action, -4

7Y

"4

Fix(s') ={uex | s(@u=u Ve es') , 3

and by ind the cohomological index [12] or the geometrical index [2]. . ]

»:;

9

Theorem 1. Let ¢ @ c1(x,n) be an invariant functional bounded from below -j{

and satisfying the Palais~Smale condition (PS): every sequence (um) such ,Ff

P

that ¢(um) is bounded and ¢'(um) + 0 has a convergent subsequence. If
N={uex | ¢(u) < 0} is such that
Fix(sHh 0 @aN{uexX | ¢'(u) =0} =g
and if  contains a compact invariant set I such that
indf =n ,

then §l contains at least n distinct S‘-orbits of critical points of ¢.

Proof. It is similar to the one in Ekeland-Lasry [10]), with

I = {(yc 2] Y is compact, invariant, ind Yy > k} ,

using also the fact that any compact invariant set which is free of fixed

points has a finite index.

T
o s abhd o




Remark. Theorem 1 is the s1-version of a result of Clark [6] for the Z,-
action. But Fix(%Z,) = {0} so that, if ¢ is even, condition
Fix(3,) "2 N{uex | ¢'(u) =0} =4
is equivalent to ¢(0) > 0.
The framework to which the above multiplicity theorem will be applied is
the following. We consider the equation

(*) Lu + VF(u) = 0

in a Hilbert space X = LZ(Q;RN), where L : D(L)C X + X is an unbounded
self-adjoint orerator with a discrete pure-point spectrum o(L) = {ki}, Ai

of finite multiplicity, and

(1) Fe c‘(!F,R) is strictly convex, F(0) = VF(0) =0 ,

2
(2) 0 < P(u) €Y l%l- +a.
The only interesting case is when L is not monotone. So we assume that .-j
g(L) N (~=,0) # § and denote by X_1 the first negative eigenvalue of L. . :."l

In the situation described above, it follows that the range of L is

1 e
closed, R(L) = ker(L) = Y, and the operator L : D(L) N Y *+ Y has a ‘:J
compact inverse K : Y + Y with with |iq

: 1 2 -3
(i) (Kv,v)x > A_1 |v|x {‘j

for all v @€ Y. On the other hand, if we also assume

’

2 2 ..
(2) sl o cpw <y 124, 0<a 0<B <y

then the Legendre-Fenchel transform of F,

4

G(v) = F*(v) = supl(v,u) - F(u)] ,
u

»

(W,

1
is a strictly convex C function satisfying
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2 2
1lvl . a € G(v) < % l%l_ +a .

(ii) Y 2

1
Therefore, we can define the duai action ¢ € C (Y,R) by

1
$(v) =5 (Rv,v), + fn G(v) .

Lemma 1. If 7@ Y is a critical point of ¢ then there is a solution

u € D{(L) of (*) such that v = -Lu.

Proof. If v is a critical point of ¢ then

(Kv + YG(v), h)x = 0

for all heyY = R(L), so that w = Kv + VG(v) € ker(L). Letting
u=w=~Kv = VG(v) we obtain, by duality, v = VF(u). Since ILu = -v, it

follows that Lu + VF(u) = 0.

Remark. Related abstract formulations of the Clarke-Ekeland dual action were

introduced in [11] and [14].

Lemma 2. If F satisfies (1), (2') with
(3) Y < -A_’ '
then the dual action ¢

(a) is bounded from below;

(b) satisfies the Palais-Smale condition.

Proof. (a) It follows from (i) and (ii) that
e L1 2 _
(iii) $(v) > 2 (X_1 + Y)|V|x alQ] ,

hence ¢ is bounded from below since Y < —A_‘.
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(b) Let (vk)C Y be such that ¢(vk) is bounded and ¢'(vk) + 0.
Then, by (iii), (vk) is bounded in X. Going, if necessary, to a
subsequence we can assume that Vi + v weakly in Y. Since K is compact, -

l(vk + Kv in Y. On the other hand, since ¢'(vk) + 0, we have

+ - = i '
Kvk VG(vk) PVG(vk) fk +0 in Y , B
where P denotes the orthogonal projection on ker(L), or, by duality, 4
4
v = VF(-ka + pVG(vk) + fk) . 9
Therefore, since ker(L) is finite dimensional and VG(vk) is bounded (VG =
B _\
has linear growth), we can assume, going to a subsequence if necessary, that ii
" 4
PVG(v, ) * w and obtain .
v * VF(-Kv + w) in Y , o
. -3
hence ve TV oin Y. -
a R
Lemma 3. Suppose F satisfies (1), (2'), ::.‘_::
(4) 1im 2EQW Ay > 1
Juf+0 |u| i ‘1
where )‘-j € o(L), A-j < A_1, and ;
© N B
(5) Z = ker(L-A _) ®**+*® ker(L-A . )C L (;R) . 1
-1 -3 E
Then there exists p > 0 such that .'1‘
- “vd
¢(v) <0 for vel={vezl |vl, =p} . ]
S
7y
Proof. Assumption (4) implies the existence of € > 0 and ¢ > -X_j such "
that F(u) » c|u|2/2 for |[ul € €. On the other hand, there is p' > 0 such
that |Y6(v)]| € € for |v] € p'. Since C(v) = (u,v) - F(u) with '
u = YG(v), we obtain, when |v| < p', e

T A
: o
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2 :
G(v) € max [{(u,v) - % Jul ™l T
ful<e -4
1
2 ]
c 2 1 |v
< max [(u,v)-:_;lul]='c"l'2—L' . ..HJ
u
Now, for v @ Z, it is easy to verify the estimate :
-——y
2 '®
{ — .
(Kv,v)x )‘-j lle . ‘
-]
Combining these estimates and using (S) we obtain )
[
1,1 1 2 -4
¢ <3 (T Q) vy <o ® ]
- A
for vez with 0 < |v]| o S P'- The proof is complete since Z is finite _::
L ]
dimensional. ]
] -
-9
» -._1
Remark. It follows from lemma 2 that ¢ has a minimum and from lemma 3 that N
-
min ¢ < 0. Thus, by lemma 1, under assumptions (1), (2'), (3) - (5), equation g

(*) admits a non-trivial solution. This result is due to Coron [8]. In order

to obtain more non~trivial solutions we shall introduce a group action.
From now on we assume there is an S‘-action on X through isometries

1
s{(6), 8 e s, and that

P : X+ X and L : D(L) € X + X are equivariant.

(6)

we mean that S(6)D(L) = D(L)

1
and LS(9)u = S(6)Lu for all u e D(L), 9 e S .)

(For the unbouanded operator L,

Then, it ie easy to see that Y = R(L) is invariant, VG : X + X and
K : Y+ Y are equivariant and, hence, the dual action ¢ is invariant. We
denote by V = Fix(st) C X the subspace of fixed points of X under the S‘- ‘..,_.

action,

V={ueXx| s(Blu=u ¥ e s'} .

W Y

.S

[T -
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It is clear that V

the restriction of L to V,

O(Lo) < o(L).

is an invariant subspace and that L, : D(L) nNv-+Yv,

Under assumptions (1), (6) and

Lemma 4.
(7) if 2
for some

(8)

Theorem 2.

_—a A

K

the result follows.

first negative eigenvalue of Lg,

0(“(—1_

2 ’

the only solution of (*) in V is u = 0.

So we assume O(L.) N (~=,0) ¥ § and denote by A_y the

so that, by (7),

(VF{u) - VP(v), u-v) < nlu-vlz, 0 <n« -X_z .

It follows (cf. Prop. A.5 in [4]) that

(VE(u) - VF(v), u-v) > % I199(w) - VR(w)]2 .

Therefore, if u eV

monotonicity of VF.

O i

Under assumptions (1) - (8), there exist at least

AP P WP, {

is a solution of (*), we obtain

il 2 = (= -
nIVF(u)Ix < (VF(u),u)x ( Lu,u)x <

and, since n < =X _, we get VF(u) =0,

applications, is the following

the only solution of (*) in Fix(s1).

TP AP SRy S - S W

—
=)

i.e.,

-8-

ILul: = -

u=0,

distinct s‘-orbits of solutions of (*) outside Fix(S‘).

is an equivariant self-adjoint operator with

A_, = sup 0(L0)11 (=°,0) > =, (VF(u) - VP(v), u-v) < nlu-vl2

1 2
X lVP(u)lx ’

-£

by the strict

A final assumption we shall make, which is satisfied in most

is continuous and ker(L) C Lc(Q:lN)

Moreover,

n=ind I

u=0

e e A

Proof. 1If O(LO) N (~»,0) =9 then L + VF is strictly monotone on V and

i8
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Proof. We start by showing that v = 0 is the only critical point of ¢
in Vv = Fix(S‘). Indeed, let v € V be a critical point of ¢, so that
Kv + VG(v) = w € ker(L) .

From the equivariance of X and VG it follows that we V, hence u =w ~-
Kv @ V. But then lemma 4 implies u =0, i.e., w=Xv =0, so that v =0,
Now, let us first assume (2') instead of (2). Then, lemmas 2, 3 and

theorem 1 applied to the dual action ¢ imply the existence of at least

n = ind I distinct orbits {L(e)vj | 8 e 81} of critical points of ¢.

(Note that assumption Fix(S1) naNn{vey [¢'(v) =0} =g of theorem 1 is
automatically satisfied from what we just showed above.) By lemma 1, to

each vy corresponds a solution uy of (*) such that vy = -Luj. If uy
and uj. describe the same orbit then uj = S(e)uj. for some O, so that

v, = -Lu_, = ~Ls(6)uj, = S(e)(-Luj,) = §(0)v

3 3
the same orbit. But then j = j'.

i.e., vj and vj. are in

In order to get rid of assumption (2'), we let

_ T 2F(w) 1 _
lim 2 )3 (FA_g-ml>o0

d = min{l (=A
2 -
lal+= jul

1

1.+
and introduce an increasing convex function X € C (R ,R) such that

x{t) =0 , if 0<C t <R
t2
x(t) = 4 2 ¢ if 2REC £t < »

Then the function
Fw) = Flu) + x(lal)
satisfies (1), (2'), (3), (4), (6), (7), so that the equation
*) Lu + VF(u) = 0
has at least n distinct solutions uj, j=1¢..,n, describing distinct
orbits. In order to complete the proof of theorem 2, it suffices to find a

bound for |u,| _ independent of R.

I

v T T s, Y~ W % 5 7 v v T T
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Let \& = -Lu, and let ; be the dual action associated to equation

(*). It follows from lemma 3 that ;(vj) < 0. Also, if Y 1is such that

a+ Lim 2EQ 7 ¢ -A_,
[ul+= Jul
then
2
Tv(u)<?-'-§]—+u

for some a > 0 independent of R. We obtain from (iii)

~ 1 1 1 2
> — _—+ —-— -
0> 4tv) > 5 (3 ~)Ivjlx al@l ,

-1 Y
so that

2 2

= <

(9) lLujlx Ivjlx M

for some M > 0 independent of R.
On the other hand, by assumption (4), there is r > 0 such that

minlul=rF(“) > 0 and so, by the convexity of F, we obtain

blul - a € F(u) € F(u)
for some a,b > 0. Therefore,
blu,]l - a € Flu,) € F(u,) € (VF(u,),u.) = (-Lu.,u,) ,
J ] J J J J 3]

and, after integrating and using (i), we obtain

A

1 -1

1 2
< =(Lu_,u.), + alf] € = = JLu. |+ alQ
. 37957% Jlx 12}

blu,
! JI

(10)

<-)‘—1—M+a|9| .
-1

Estimates (9), (10) together with assumption (8) imply a bound for Iujl

independent of R, so that the proof of theorem 2 is complete.

-10-
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3. Applications.

We first consider the number of non-constant T-periodic solutions of a

Hamiltonian system
(11) Ju + VH(u) =0 ,
where J{x,y) = (-y,x). We assume that 0 is an equilibrium, i.e.,

VH(0) = 0, and that H(0) = 0.

Theorem 3. Let H & C1(l?n,n), T>0 and j @ N*. If H is strictly

convex,

(12) Iim 2“‘2‘ <$'— ,
lal+= |u]

(13) lim 31‘-%‘-’- > 3%’1 ,
fuf+0 ful

then the system (11) has at least jn non-constant T-periodic solutions

describing distinct orbits.

Proof. Let L be the operator defined by Lu = JG with T-periodicity
condition on X = LZ(O,T;RZH). Then L is self-adjoint, o(L) = (2n/T)E% and
every eigenvalue is of finite multiplicity. Assumption (12) implies (2) and
(3) and assumption (13) implies (4) with A_1 = =2n/T, k_j = ~2j7/T and

F = H. Since the eigenfunctions are

Zk"t)e + (sin Zznt

(cos e , kez ,
assumption (5) is satisfied. The group S1 acts on X through the time
translations S(8) defined by

(s(B)v)(t) = v(t+0) .

It is clear that L and VF : X + X are equivariant. Moreover, Fix(S‘) is

the set of constant functions so that V = ker(L). Also, it is easy to verify

-fl=

A Sy Y Y -~ - Py e —t e A —a ala & )
0 -t a alal i om -t mlmTat aaasr el J

------
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(8). And, since
Z = ker(L + %1) 9°+® ker(L + 2%1) ’
the index of I = {vez| Iv|x =p} is 3jn. So, by theorem 2, there exist

at least jn distinct S’-orbits of non-constant solutions of (11) in X.

Remark. 1) When 3j = 1 assumptions (12) and (13) imply the existence of a
solution with minimal period T [7]. We obtain n T-periodic solutions,
but T is not necessarily the minimal period.

2) In general, no more than n distinct orbits with minimal period can
be expected.

3) After this work was completed we learned from P. H. Rabinowitz and V.

Benci that related multiplicity results were proved by H. Amann~E. Zehnder [1)

and V. Benci [3]. We remark that their results were obtained by a different

approach under the supplementary assumption the VH is linear at 0 and at *.

Theorem 2 applies also t» Hamiltonians of the form H(p,q) = lplz/z +

V(q). We assume as before that VV(0) = 0, V(0) = 0.

Theorem 4. lLet V € c‘(lP,l), T>0 and je@ wW*. If V is strictly convex,

—_— 2V(u 41r2

lim =~ ,
lalse [ul? o2

2.2
lim 2V(;) N 4]217 ,
lul+0 |ul T

then the system
u+ YV(u) =0
has at least jn non~constant T-periodic solutions describing distinct

orbits.

-12-
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tu. ]
-k. Remarks. 1) The proof of theorem 4 is similar to the proof of theorem 3. It -
3 1
3 » seems that there is no reduction of one result to the other.
t?‘ 2) Related results are contained in [2] but under the assumption that B
N -
. S
- V*(0) exists and that either V(u)/lul2 + 0 as [ul + ®» or VvV jis linear j
at =, '
—-3
We now consider the non-linear Dirichlet problem on the unit disc o

in R°. Let A be the operator =~A with Dirichlet condition on X =

R
¢
PR

2 2
L (2,R). The eigenvalue of A are of the form Uy =V where VvV is a

strictly positive zero of some Bessel function Jn' néeN of the first

kind. The associated eigenfunctions are

LA S ash 40/

[2

Jn(vr)cos nb, Jn(vr)sin nd .

v
v

; Note that if Vv is a zero of Jo the Jo(vr) is a (radial) eigenfunction

:i_ associated to U = Vz. Letting J(A) = {u1,u2,...}, where

0 < ,y < u2<... » then each eigenvalue ,, is either double or simple. (It
follows from a deep result of C. Siegel, cf. {13, pg. 485], that the strictly

positive zeros of Jn1 and an are distinct if n, ¥ n,.)

Theorem 5. Let F & C’(l,n) be a strictly convex function with FPF(0) =

F'(0) = 0., Assume that
(14) Tim 2Ew)

ful+e u

(15) lim

£(u)=f(v) .
(16) ———=<nc<u -

where k > 3, £=1 > j > 1 are such that { } (w0 | Jo(/:) = 0} =

'S RS EARREAS '

=4, Jo(/uk_z) =0, and f = F'. Then the problem

1 4
S N
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-Au - W + £(u) =0 in Q ,

(17)
u=20 on 3 ,
has at least j non-radial geometrically distinct weak solutions. (We say

that two function uy, u, are geometrically distinct if after an arbitrary

rotation u, remains different from “2')

Proof. We let L be the operator A - ¥y with Dirichlet condition on

X = Lz(ﬂrl). so that L is self-adjoint and 0o(L) = {uj-uk | 3 =1,...}.

Again, assumption (14) implies (2) and (3) and assumption (15) implies (4)

A =y

k=1 Wy -3 . Also, assumption (5) is automatically

with X_1 =y -u

satisfied. We let the group s’ act on X through the rotations,

k-3 k

(s(B)v)(x) = v(R(68)x) |,

where R(0)x = R(G)(x1,x2) = (x1cose - xzsine, x1ain9 + xzcose). Tren it is

clear that L and f = F' : X + X are equivariant and Fix (S‘) is the set

of radial functions. Finally, assumption (16) implies (7) with

X_z = uk-l - uk. And, since
Z = ker(-4 -y __,)0 o ker(-A - "k-j)
where each summand is two-dimensional, the index of I = {v e z | |v|x = p}

is 3j. Therefore, theorem 2 implies the existence of at least j non-radial

geometrically distinct weak solutions of (17).
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